If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5a^2+40a=0
a = 5; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·5·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*5}=\frac{-80}{10} =-8 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*5}=\frac{0}{10} =0 $
| 24+900x=293x+29093 | | 4x-6x=-3x-4 | | n=(-n)=3+15 | | 3(3w+4)=24 | | -6(-6x+1)=174 | | X^2-1/2x^2=27 | | 2x+28=257x+23 | | -9(v+3)=-12-4v | | 7m=574 | | 20=0.6x | | 7{x-19}=7x3 | | 4(2+7x)-7x=155 | | 3x(2)=-3x(2)+12 | | -10x^2+300x+40,000=0 | | 32=(w^2)(4w) | | 3(X+1)=4x-9 | | 3x(4)=-3x(4)+12 | | 32=w^24w | | 4/(5*x)+1/10=3/(2*x) | | X^2-676x+57600=0 | | -3(5x+2)=5(3x-6) | | 4/5x+1/10=3/2x | | (2x)+(3x)+(x+15)+(3x-30)=360 | | 4(3x+20-18=14 | | 6.7=(-2.3)x | | 12x-5=-5x+15 | | 2x-9=7x+3 | | 8x–10=26 | | 5(3w+6)/3=9 | | 8+3/y=19/y | | 1-4x-20=2 | | 5x+4x-99=12x |